
Abstract

Brains enjoy a bodily life. Therefore animals are subjects with a
point of view. Yet, coding betrays an anthropomorphic bias: we
can, therefore they must. Here I propose a reformulation of
Brette’s question that emphasizes organismic perception, cau-
tioning for misinterpretations based on external ideal-observer
accounts. Theoretical ethology allows computational neurosci-
ence to understand brains from the perspective of their owners.

An apparently innocuous word in Brette’s question is a major
source of confusion but also contains a great deal of the answer.
Is coding a relevant metaphor for “the” brain? Yes and no. It
depends on whose brain we are talking about. For the scientist
studying the animal, coding is certainly relevant (at least, as the
ubiquity of such figure of speech attests in current neuroscience).
But, insofar as we are interested in the animal and its brain, the
answer is likely no. The mantra “stimulate, record, correlate”
misses the point of the organism. It is for us, by us. That the
experimenter’s model can decode the signal does not mean that
the brain can or does. The information necessary to make sense
of the data in terms of coding is seldom available to the organism,
upon which coding is predicated. This creates a can-ought prob-
lem: a description of what the neuroscientist can do prescribes
what the animal must do. Such implicit tension pervades most
of the disagreements that Brette’s question shall spur. The prob-
lem, I believe, is deeper than coding: There is a conflict of interests
between the scientist and the laboratory animal.

Biology is the science of living beings. Organisms are centers
of action. As such, perspective matters. To be an organism is to
have a point of view. All animals share a common world but
not all animals have a world in common. Each living organism
has its own Umwelt (meaningful environment), which is different
than its Umgebung (physical surroundings): A tree is a tree, but a
tree for an ant has little to do with a tree for a carpenter (Uexküll
1926). What is meaningful for an organism – or even what is pos-
sibly apprehensible – need not be meaningful for the scientist
studying it, and vice versa (a concrete and pervasive example:
stimuli are more the experimenter’s output than the animal’s
input). The use of the definite article (“the brain”) or the indefi-
nite pronoun (“one finds”) is so delicate in biology. It easily blurs
the subject (I? you? the mouse? what mouse?), unbinding grave
conflations and misleading thought and interpretation.
Eloquently said, “Hedgehogs as such do not cross roads (…).
On the contrary, it is man-made roads that cross the hedgehog’s
millieu” (Canguilhem 2008, p. 22). Rather than being an excep-
tion, coding illustrates such misattribution. Paraphrasing, we
could say that cat brains as such do not encode stripes, but it is
stripes that we decode from the cat’s brain. A clash of Umwelts
(Umwelten, in proper German) is going on in our laboratories.

The notion of Umwelt has no place in physics; it does not vio-
late physics, but it is not reducible to physics either. Living beings
inhabit a world of meaning that includes but exceeds the physical
world of masses and forces, and even more so the mathematical
world of zeros and ones. The appreciation of the uniqueness of
biology discords with a cornerstone of the scientific approach:
objectivity. Of course we always observe reality from a viewpoint,
explicitly or implicitly chosen. But it is ultimately deemed irrele-
vant. Objectivity, then, is the pretense of self-exclusion from the
phenomenon under study. The observer vanishes in classical
physics (also in biology). By means of a representation of things

that ultimately does not depend on the reference system, an
observer-independent reality is erected. Yet, “[o]n the strength
of the immediate testimony of our bodies we are able to say
what no disembodied onlooker would have a cause for saying:
(…) the point of life itself: its being self-centered individuality”
(Jonas 2001, p. 79). From subjectivity we have prodigiously
built an objectivity that can dispense with the former. However,
upon inspection, objectivity becomes a particular kind of inter-
subjective consensus. This is biology’s scotoma: We are subjects
whose objects of study are subjects too.

In behavioral neuroscience there is an observer-observed gap.
Physiology aspires to study the inner workings (brain) of an organ-
ism from the outside (scientist’s perspective); ethology strives to
understand the outer happenings (behavior) from the inside (ani-
mal’s perspective). Isn’t the neurophysiologist’s decentering a
covert self-centering? Sticking electrodes is not sufficient to know
what it is like to be a rat. But, how to look through the animal’s
eyes? A cute example is Turtle Geometry: it actually matters if a tur-
tle traces a circle by solving the x2 + y2 = r2 equation, or by iterating
a “run and turn” procedure. Both are mathematically equivalent
(from an external ideal observer, perhaps indistinguishable, even
irrelevant) but biologically they are not the same. There is much
to gain from discovering “the range of complicated things a turtle
can do in terms of the simplest things it knows” (diSessa & Abelson
1981, p. 3). What is it to make sense from the animal’s perspective
when it does not do so the way we do? Such is the paradox: The
Umgebung, the objective world of scientists, can be part of our
human Umwelt (we do not feel neutrinos crossing our bodies,
but we can detect them in bubble chambers), but it collides with
the Umwelt of the animal, which is never an Umgebung.
Neuroscientists yearn for neural codes; the animal has no clue.

Neuro-ethology is actually meta-engineering: our problem is to
solve how animals solve their problems – to scientifically empathize
with each creature. This entails a revision of Bernard’s (1957, p. 103)
foundational words: The scientist “no longer hears the cry of ani-
mals, he no longer sees the blood that flows, he sees only his idea
and perceives only organisms concealing problems which he intends
to solve.” By reformulating Brette’s question, my intention here has
been to emphasize that computational neuroscience can benefit
from the insights of theoretical ethology to transform its anthropo-
morphic bias. To crack codes, “it would suffice that we be angels.
But to do biology, even with the aid of intelligence, we sometimes
need to feel like beasts ourselves” (Canguilhem 2008, p. xx). The
question then is not so much whether coding is relevant or
wrong, but to what extent it is misleading. We must then ask:
Whose brain is the coding metaphor relevant for?
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Abstract

The long-enduring coding metaphor is deemed problematic
because it imbues correlational evidence with causal power. In
neuroscience, most research is correlational or conditionally cor-
relational; this research, in aggregate, informs causal inference.
Rather than prescribing semantics used in correlational studies,
it would be useful for neuroscientists to focus on a constructive
syntax to guide principled causal inference.

In his article, Brette argues that the “coding metaphor” in neuro-
science is inappropriate and misleading because it leads to false
interpretations of causality. Brette states that “by postulating
that neural codes are representations, we imply that these codes
have a causal impact on the brain” (sect. 4.2, para. 1). However,
this is implausible since “[in the] technical sense … the word
code is used as a synonym for correlate” (sect. 1, para. 4).
Restated, the coding metaphor is problematic because it can
imply causal function where sufficient evidence to support causal
inference does not exist. By relying on this criticism, Brette com-
mits to a broader error: He interprets that isolated correlations,
conditional correlations, and statistical inferences between neural
activity and function support or refute causal inference. Isolated
pieces of correlational or statistical evidence are insufficient to
demonstrate a causal relationship between neural activity and
functions, perceptions, or behaviors, and should be considered
in aggregate to form the basis of causal inference. For this reason,
it would be helpful for those seeking to design and interpret
experiments to adopt a constructive framework for causal infer-
ence in neuroscience.

The correlational nature of individual studies in neuroscience
has been explicit since the dawn of electrophysiology, when
Caton (1875) stated that “[t]he electric currents of grey matter
appear to have a relation to its functions.” Contemporary studies
of neural activity and function are still strictly correlational, despite
advances in recording and analysis methods. Traditional statistical
techniques are agnostic to causal relationships between variables
and thus cannot determine causality (Pearl et al. 2016).
Experimental interventions that support causal inferences between
brain (dys-)function and behavior have long been sought (Dodds
1878; Ferrier 1886). However, even studies that use modern ver-
sions of these “causal” techniques (optogenetic, chemogenetic, elec-
trical, and pharmacological modulation) provide correlations
conditioned on perturbation. Causal inferences on the basis of sin-
gle experimental results should be tempered because of plausible
confounding and off-target effects (Jazayeri & Afraz 2017).

Insights from other fields provide a clear path toward causal
inference with individually circumstantial pieces of evidence. The
most influential perspective may be that of medical statistician
Austin Bradford Hill, who described nine “viewpoints” that guide
causal inference in epidemiology when randomized controlled tri-
als are not possible (Hill 1965; see also Phillips & Goodman 2004).
Here these viewpoints are adapted to form a Bradford Hill-inspired
framework for causal inference in neuroscience, where aggregated
observational and interventional studies support causal inference:

1. Correlational evidence: Relationships between measurements
of neural activity and experimenter-defined responses
(whether in downstream neural activity, other physiological
or behavioral outcomes). These relationships can be character-
ized through a variety of forward and backward modeling tech-
niques (see, e.g., Anderson 2019; Baayen et al. 2008; Marinescu
et al. 2018; Rougier 2019; Saxena and Cunningham 2019; Song
et al. 2013; Wang and Yang 2016).

i. Strength: Does the neural activity explain a reasonable
amount of variability in the response?

ii. Consistency: Does the neural activity reliably produce the
outcome?

iii. Specificity: Is the observed relationship between neural
activity response unique or one of a vast array of poten-
tially confounding correlations?

iv. Relationship curve: Is there a clear geometric relationship
between neural activity and the response?

v. Temporality: Does the neural activity consistently pre-
cede the response in time?

vi. Mechanistic plausibility: Is there a plausible mechanism
whereby neural activity may produce response?

2. Conditionally correlational evidence: The effect of direct or
indirect modulation of neural activity on experimenter-defined
outcomes. Modulation includes loss-of-function and
gain-of-function “causal” manipulations that are under control
of the experimenter.

i. Strength: Does modulation of neural activity explain a
reasonable amount of variability in the response?

ii. Consistency: Does modulation of neural activity reliably
produce the predicted outcome?

iii. Specificity:Doesmodulation of neural activity lead to a pre-
scribed outcome or one of a vast array of potential effects?

iv. Relationship curve: Is there a predictable and replicable
geometric relationship between modulation of neural
activity and the response?

v. Temporality: Does the predicted effect follow the per-
turbed neural activity at a reasonable delay?

vi. Coherence: Is the predicted effect of modulation of neu-
ral activity coherent with other strong hypotheses?

vii. Analogy: Does a modulation of closely related neural
activity patterns produce similar effects?

With this framework in mind, one should reconsider Brette’s claims
related to neural codes and causal inference. For example, Brette
states that “BOLD (blood oxygen level-dependent) signal …
encodes visual signals in the same technical sense that the firing
of neurons encodes visual signals” (sect. 4.2, para. 2). Functional
magnetic resonance imaging and electrophysiology studies are
both correlational, but Brette’s assertion is deeply flawed in impor-
tant ways. In fMRI and electrophysiology, fundamentally different
biological activity is associated with stimulus or behavioral response
of interest (Goense and Logothetis 2008). Thus, the mechanistic
plausibility of a link between neural activity and the experimental
condition differs. Furthermore, the spatial specificity and temporal-
ity of visually evoked activity cannot be similarly addressed across
techniques (Sejnowski et al. 2014). These factors are critically
important in guiding causal inference, and therefore, each technique
uniquely contributes toward causal inference. To suggest that BOLD
signals and action potentials encode visual stimuli in the same tech-
nical sense is a conspicuous oversimplification. In this example, the
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proposed framework for causal inference aids in articulating the rel-
ative strengths and weaknesses of different experimental approaches.
Furthermore, it provides guidelines for making causal inferences by
aggregating individual pieces of evidence that are insufficient in
isolation.

Regarding the causal relationship between the physical world
and thought, Haugeland (1985, p. 106) stated, “If you take care of
the syntax, the semantics will take care of itself.” This axiom pre-
sents a useful analogy: with a proper framework to describe the syn-
tax (rules and criteria) of causal inference in neuroscience, Brette’s
claim – the coding metaphor perpetuates inappropriate causal infer-
ence – is reduced to an innocuous semantic debate. His further
claim that metaphors perpetuate “semantic drift” (sects. 2.1, 2.2,
and 3.1) should be addressed not by further semantic prescriptions,
but by adhering to reasoned syntax. These semantic debates distract
from the ultimate goal of discovering robust, causal relationships
between the many levels of organization in the brain and behavior.
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Abstract

Brette criticizes the notion of neural coding because it seems to
entail that neural signals need to “decoded” by or for some
receiver in the head. If that were so, then neural coding would
indeed be homuncular (Brette calls it “dualistic”), requiring an
entity to decipher the code. But I think Brette’s plea to think
instead in terms of complex, interactive causal throughput is
preaching to the converted. Turing (not Shannon) has already
shown the way. In any case, the metaphor of neural coding
has little to do with the symbol grounding problem.

Both Shannon’s (1948) information andTuring’s (1936) computation
are important in cognitive science. Shannon is concerned with the
faithfulness of signal transmission in communication, and Turing
is concerned with what algorithms can do. Cognitive science is con-
cerned with what organisms (hence their brains) can do, and how.

Cells (including neurons) transmit signals. This is already true
in plants (Baluska & Mancuso 2009) and of course also in
machines. And organisms certainly do things. Which of the things
organisms do are “cognitive” and which are “vegetative” is mostly
just a definitional matter, but it is probably overstretching the
notion to say that paramecia or hearts are “cognizing.” The exam-
ples are nevertheless instructive for cognitive science, because par-
amecia, hearts, and organisms with brains are all systems that can
do things. So are computers and robots, for that matter. Hence
finding a causal explanation of how one of them does what it
does may provide useful lessons for explaining the others.

Let’s start with the heart, an example used by Brette. What
does the heart do? It pumps blood. No metaphors. The heart lit-
erally pumps blood, and cardiac science has successfully
reverse-engineered the heart (to a close approximation). We
know how the heart does it – and part of the proof that we
know how is that we can apply and test our hypotheses about
how the heart pumps blood by building a synthetic model of a
heart, plugging it into the heart’s inputs and outputs, and testing
whether it can pump blood. If it can, the artificial heart passes the
“Turing Test” for cardiac function.

So what does the (human) brain (and body) pump? Human
behavior. Or, rather, human behavioral capacity. What people
can do. Let’s forget about what portion of that capacity counts
as cognitive and what proportion is just vegetative (like cardiac
function): It all consists of the capacity of a (living) system to
do certain things. Now the challenge is to explain how.

Turing (1950) provided the ground rules: You have an explana-
tion if you can design a system that can do everything a human
being can do, indistinguishably – to a human – from a human. If
your interest is just in “cognitive” capacities, then just generate
those, ignoring the vegetative capacities (or at least those that are
not essential for generating the cognitive capacities). Cognition,
like Justice Potter Stewart’s pornography, may be hard to define,
but we know it when we see it. And the capacity to interact with
the dynamicworld of objects and events and their properties (includ-
ing words describing those objects, events, and properties) indistin-
guishably from the way humans do is surely cognitive, if anything is.

There is one more thing: Humans don’t just do: They also feel.
It feels like something, to a human, to be seeing and doing what
humans can see and do. But the capacity to feel eludes Turing’s
program for cognitive science. It’s something our brains pump
invisibly. Turing (1950) accordingly brackets it. But it keeps mak-
ing disruptive peekaboo appearances in our attempts to
reverse-engineer cognition, as we shall see.

One of the main hypotheses about how the brain pumps cog-
nitive capacity is via computation, Turing computation.
Computation is the manipulation of “symbols” (arbitrary formal
objects) on the basis of rules operating only on the symbols’
shapes (“syntax”), not their meanings (“semantics”), to generate
certain symbolic outputs from certain symbolic inputs. That’s
what algorithms do. (An intuitive example is the rule we all
learned in school for extracting the roots of quadratic questions:
“minus b plus or minus the square root of ….”)

Algorithms are like recipes: apply them to the symbolic ingre-
dients and you can explain how to bake a symbolic cake.
Computation is very powerful; just about everything in the uni-
verse can be encoded symbolically and explained computationally,
including cardiac function. The right algorithm can pump sym-
bolic blood. And you can show that the algorithm really works
by applying it to build a synthetic heart that really passes the car-
diac Turing Test (TT) and pumps blood. But to do that, you have
to “interpret” the symbolic code and implement it in material
form, just as a formal recipe for a cake needs to be implemented
in material form, using the real ingredients referred to by the sym-
bols, to generate a real cake.

So, despite its enormous power, computation cannot be all there
is to cognition. Searle (1980) showed, famously (in this journal),
that a computer is not cognizing even if it can pass the TT because
Searle too could pass the Chinese TT by executing the symbolic
code without understanding a word of Chinese. Why can’t he
understand? Because there is no connection between the symbols
in the code and the objects in the world that they are interpretable
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